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Abstract: - Keeping critical data safe and accessible from several locations has become a global preoccupation, 
either being this data personal, organizational or from applications. As a consequence of this issue, we verify the 

emergence of on-line storage services. In addition, there is the new paradigm of Cloud Computing, which brings 

new ideas to build services that allow users to store their data and run their applications in the Cloud. By doing a 

smart and efficient management of these services’s storage, it is possible to improve the quality of service 

ordered, as well as to optimize the usage of the infrastructure where the services run. This management is even 

more critical and complex when the infrastructure is composed by thousand of nodes running several virtual 

machines and sharing the same storage. The elimination of redundant data at these services’s storage can be 
used to simplify and enhance this management. This review study presents a solution to detect and eliminate 

duplicated data between virtual machines that run on the same physical host and write their virtual disks data to 

a shared storage. Finally, a study that compares the efficiency of two different approaches used to eliminate 

redundant data in a personal data set is described. 
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I. INTRODUCTION 
Dependable backup services are increasingly important to enterprises but also to common users that 

want to keep their personal files safe. A traditional approach, for common users, is to have a copy of all their 

files in an external hard drive. For enterprises the solution requires having a larger storage and a more complex 
solution to backup their critical data. For some enterprises, data is so important that several backup copies must 

be kept in different physical locations in order to avoid losing it in case of natural catastrophes.  

Another important aspect for both enterprises and common users is the need of accessing their data 

remotely from different places. For this purpose, the web is a good solution, having in mind how easy is to insert 

and retrieve information of any kind from it. This explains the emergence and success of on-line backup 

services like Dropbox, Box.net, Rapid Share and Google Docs, that allow clients to have their data safe in the 

web. These services are more than just simple data archives. The Cloud Computing model [1] allows users to 

shift their data and applications to the web and run them without the obligation of having their own physical 

infrastructure. With this new paradigm, new services were created with different goals [5].  

One type of service provided gives the client the possibility of running applications in the cloud's 

infrastructure. Services like Amazon EC2 and Google App Engine provide this type of service. Another kind of 

service has the goal of providing remote storage. There are also other cloud services with different 
functionalities, like Amazon SimpleDB that enable the client to store and query data with the advantage of 

retrieving only the information needed and doing it more quickly than with services like S3. This service is 

intended to store small data sets, but can be used with Amazon S3 in order to have Simple DB functionality with 

larger data sets. 

 All the cloud services described above allow the client to stop concerning with problems, such as: 

 Dependability. Clients' applications and data stored in these services must be accessible 24 hours a day and 

seven days per week. Besides that, clients' data is stored redundantly in several data centers in different 

geographical locations. 

 Elasticity. Clients have the illusion of having unlimited resources. For example, in Amazon EC2, when 

clients' applications need to scale, this can be done in a few minutes by running an additional virtual 

machine. Clients also have the possibility of starting with few resources, buying more resources only when 
they are necessary. 

Another important aspect is the use of virtualization [9, 17] technology by cloud services. Virtual 

machines (VMs) allow these services to have increased flexibility in terms of deployment and re-deployment of 

applications in the cloud. Deploying a new virtual machine or redeploying it in another physical server is faster 

and simpler than deploying a new physical server. Virtualization also al-lows having more control over cloud 

resources, like disk, network and computation power. Therefore, these resources can be distributed accordingly 

to the applications' needs. The use of virtual machines is a key aspect to achieve the elasticity property. Virtual 
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machine's isolation property assures us that a failure in one VM does not affect the other VMs running in the 

same physical server. Cloud infrastructure is therefore composed by several data centers. In each data centre 

there are several physical nodes running a certain number of virtual machines. The cloud storage has to be large 

enough to accommodate these virtual machines images and the clients' data that is stored remotely. 

Regarding cloud computing provider's storage, duplicated data is expected to be found between the 

several virtual machines images and between data stored remotely. Additionally, there is the possibility to run 

applications that use databases in the cloud, which may need to create several replicas in order to process a large 
number of concurrent read requests. This will further increase the number of duplicated data. 

 Usually, systems that provide solutions to reduce data duplication are known for indexing the storage's 

data in order to share data with the same content. The elimination of redundant data is known as deduplication. 

Deduplication can also be used to improve bandwidth usage for remote storage services. If the storage's data is 

indexed, then it is possible to choose what data really needs to be transmitted to the storage server and what data 

is already there. 

 

II. PROBLEM STATEMENT 
Effective deduplication in a cloud computing scenario rises however a number of challenges. First, 

there are architecture challenges. In this scenario, at least one distinct VM is running for each client's 

application. This means that data is spread by several VMs virtual disks. Additionally, groups of VMs are 

running in distinct physical machines. Finally, there is the necessity of keeping data deduplication process 

transparent to the VMs and the applications running on them. Second, there are algorithm challenges. An 

efficient method to detect modified data and to share identical data is needed. This method must use metadata to 

compare the modified data with the storage's data in order to share it. Metadata's size is needed to have in 

account to achieve an efficient deduplication algorithm. To detect modified data without having to scan all the 

storage, a method that intercepts I/O requests to the disk is also necessary. This approach reduces the CPU usage 

but can introduce significant overhead in the I/O requests. This overhead value must be as low as possible. 

 

2.1 Objectives  
 The main goal of this dissertation is to show how deduplication can be achieved in a virtualized 

system, towards finding and eliminating redundant data in the context of cloud computing services. A second 

objective is to evaluate the impact of deduplication in personal data towards demonstrating the usefulness of the 

proposed solution. 

 

2.2 Contributions  
As the first contribution, we present an approach to detect and eliminate redundant data in a server 

where several virtual machines are running. This server's virtual machines store their images in a shared storage. 

As the second contribution, we present both our prototype, working with Xian [2], that implements the approach 

referred above and the results of our prototype's evaluation in terms of space saved and overhead generated. 

Finally, we present a study and its results for the redundant data found in a personal les' data set. In this study, 

we compare two distinct methods: the whole le approach, which find les with the same content, and the fixed 
block size approach, which finds blocks, with a fixed size, that have the same content. 

 

III. RELATED WORK 
This chapter presents the state of the art for: data redundancy detection and elimination methods, storage and 

backup services, Cloud Computing services and virtualization scenarios that are related with our work. 

 

3.1  Finding and Eliminating Duplicated Data  

There are several methods to find redundant data. The first of these methods is the whole file content 

hashing [15] that calculates a hash sum of the entire file's content. If two files have the same hash value then 
they have identical contents. Another option is the fixed size block method [6, 9, 15], where duplicates are 

found at the block level. The process is identical to the one from the whole file approach, but instead of 

calculating hash sums for the entire file's content they are calculated for file's blocks with a fixed size. A third 

method uses chunking and Rabin fingerprints [4, 6, 9, and 15]. Chunks are also defined by content, but their 

bounds are not restricted to a fixed size, like in the fixed size block approach. A sliding window moves through 

the file's content and calculates fingerprints for a chunk. When a predefined pattern is found, the chunk 

boundaries are marked and its signature is calculated.  

The main difference among the fixed size block method and the chunking method is visible when a file 

is modified. The chunk method only needs to recalculate the signature for the chunks where modification were 

made. The fixed block size approach needs to re-calculate the signature for the blocks where modification were 

made and for all the subsequent blocks of the same file. These methods focus only on detecting data that has 
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exactly the same content. The super-fingerprint method [9, 10] can be used to find similar data. A super-

fingerprint is a group of fingerprints be-longing to different parts of the same file. If several super-fingerprints 

of a file are calculated, the resemblance among files is given by the number of super-fingerprints that match. 

 Delta encoding [9] is used to reduce redundancy between similar files. This method generates a delta 

file containing differences between the les, which allow keeping only one le and the delta le needed to rebuild 

the other file. This method does not find similar files.  

REBL [9] uses compression, chunking and delta-compression of the chunks. First, chunks are 
calculated and hashed in order to find duplicated data and to eliminate it. Then, similar chunks are found with 

super-fingerprints and are delta-compressed. Finally, all the chunks that were neither delta-compressed nor 

eliminated in the chunking process are compressed all the methods described above present ways to find or 

remove redundant data, with the exception of REBL and compression that present both methods. Despite that, 

these methods present ways of saving space, but they are not concerned with the actual process of sharing data, 

from different users, and the necessity of maintaining this data consistent when clients need to access it.  

All the methods described above were tested in a scenario where the detection of duplicated data was 

accomplished with a scan approach. With this approach, the opportunities for sharing data are detected by 

scanning all the storage. The scan approach fits well for the purpose of the studies described in this section. 

However, for our specific scenario where data will be modified constantly, the scan approach will introduce 

significant overhead in computational power. This happens because this approach needs to scan the storage 
several times to check for modified data and share it. Having this specific scenario in mind, a dynamic approach 

that detects modified data, suits better on our work. As an example, this can be achieved by intercepting I/O 

write requests to the storage. 

 

3.2  Remote Backup/Storage Services  

LBFS [13] is a network le system designed to reduce bandwidth when transmitting les to the server. 

Files are divided into content defined chunks using Rabin fingerprints. For each chunk, a SHA-1 digest is 

calculated and stored locally. Before transmitting a file, SHA-1 signatures of its chunks are sent and compared 

with the ones available at the receiver. This way, clients only send the chunks that are missing at the server. 

LBFS approach uses duplicate detection to reduce bandwidth.  

Pastiche [6] provides a solution to reduce storage redundancy in a backup peer-to-peer system that 

resembles LBFS. Like LBFS, Pastiche uses content based indexing. When a peer contacts another to backup its 
data, chunks signatures are sent first. This way, Pastiche only stores chunks that do not exist already at the 

receiver. The main difference from LBFS is that Pastiche's data is stored on peers as chunks. By storing data this 

way, the sharing process is simplified because an additional table relating data stored with chunks is not needed 

to keep. These chunks also contain information about the peers sharing them for garbage collection. This 

solution also introduces the idea of choosing peers to hold backup by their data proximity. This way, when one 

node wants to backup its data; it calculates signatures of some of its chunks and compares them with the 

signatures calculated from other peers. This approach allows finding buddies that will probably be more suitable 

to keep backups of that node in terms of storage space and bandwidth saved.  

The Vent [16] archival storage system is aimed at keeping data that has a write-once policy. This way, 

data is never modified neither deleted from the storage. Venti presents a simple interface to read and write 

blocks of several sizes. Backup applications can use Venti as backend with this API. In Venti, blocks are 
identified by their hash, which allows eliminating duplicated data at the storage. The index that keeps all blocks 

signatures is implemented with a disk resident hash, which represents a performance penalty because every 

request must use it.  

All these solutions are intended as backup solutions. This way, they are not concerned with the need to 

store and retrieve data efficiently. Besides that, their implementation details are not known because they are 

commercial products. These approaches are not intended to store virtual machines images. The exception is 

EMC Avamar that has specific software used to store VMware virtual machines images, but, once again, this 

solution is intended for the backup scenario, which is not expected to have a huge load of read and write 

requests to the VMs images. 

 

3.3  Cloud Services  
Cloud Computing storage services like Amazon S3, Amazon EBS, Amazon SimpleDB and Google 

App Engine Data store provide remote storage services for their clients. Amazon S3 offers a storage service 

with a simple API that allows clients to store retrieve and delete objects from different namespaces, called 

buckets that are also managed by the client Amazon SimpleDB and Google App Engine Data store allow clients 

to store data and to be able to perform queries on it. 

 Google App Engine and Amazon EC2 allow clients to run their applications in these services' 

infrastructure. Google App Engine forces the users to write their applications in Python or Java and to respect 



Efficient Storage of Large Scale Data in Cloud Computing 

www.iosrjen.org                                                    4 | P a g e  

this service APIs. These applications run in Google infrastructure and, if needed to scale, this is done 

automatically if the user pays the additional load. Amazon EC2 service has a different approach. In this service, 

the user customizes a virtual machine image with her application and deploys that virtual machine into Amazon 

infrastructure. If the application needs to scale, the client can run an additional virtual machine instance with her 

application image in minutes. This is not done automatically, so the user must explicitly start the instances she 

wants to use. If the client wants to keep her virtual machine images state stored persistently, then she can use the 

S3 service or the EBS service. Amazon EBS provides a block level storage volume that can be attached to an 
Amazon EC2 instance. These volumes persist even if the instance is terminated or fails. The main benefit of 

using EBS, instead of S3, is that this service presents a better solution in terms of efficiency and simplicity for 

applications that need to use raw block storage, file system or databases. Using S3 for an application that uses a 

database can also be achieved, but this solution has some restraints attached to it [3].  

In the context of our work, the combination of Amazon EC2 and EBS is very interesting because it 

represents the precise scenario where our approach performs deduplication. With this combination, we have 

virtual machines writing to their virtual disks, which will probably be mapped to a common storage. Duplicated 

data can be found inside the virtual disks and across them. The cloud services described above do not present 

any public information about their infrastructure and architecture. This way, we cannot know precisely their 

details. However, the information above shows us the importance of virtualization in these services and also 

gives us some hints about the type of information that needs to be stored.  
Eucalyptus [14] is a project that presents a framework to implement cloud computing services on top of 

private clusters. Eucalyptus current version provides two types of services: one resembling Amazon EC2; and 

another resembling Amazon S3. In fact, the APIs provided by Eucalyptus are identical to the Amazon APIs. 

Regarding Eucalyptus design, each physical node in the clusters has a node controller that has the responsibility 

of managing the VM instances and the resources of its physical node. More specifically, this node is able to start 

and stop instances as well as to provide information about physical node resources and virtual machines 

instances running on it. Currently, there are only supported virtual machines that run atop the Xian hypervisor. 

A cluster controller is used to manage several node controllers. This controller can be used to schedule incoming 

requests to a specific node controller and gather resources information about a set of node controllers. The work 

described in this section does not address any deduplication approach. However, this work is important to 

understand design details of cloud services and to understand the type of system where we want to eliminate 

duplicated data. 
 

3.4  Virtualization Scenarios  

Parallax [11] presents a solution to reduce redundancy among persistent snapshots of virtual machines 

images and their current image. This solution is intended for a cluster where there are several nodes and each 

node can run more than one VM. All these nodes have access to a shared storage (block device) where they keep 

their VMs' disk images (VDIs) and their snapshots. For each physical node, there is an instance of parallax 

running that controls all I/O requests from VMs that are also running on that same node. When a snapshot is 

taken, its blocks are shared with the current image; when a request to write to a block that is shared is 

intercepted by parallax, a copy-on-write operation is performed to keep the block content consistent.  

By having copy-on-write techniques, each Parallax instance needs to be able to reclaim free blocks to 

execute this operation. To solve this problem, a lock mechanism is used to ask for free blocks. In order to avoid 
using the distributed lock mechanism every time a Parallax instance needs space to write VDI's data, an extent 

mechanism is introduced. Blockstore
6
 is divided into fixed size extents. These extents are typed. Data extents 

hold VDIs' blocks and metadata extents hold information, such as radix trees, and are locked by Parallax 

instances in order to write to the Blockstore. There is a special extent that holds information about shared 

storage's size, extent's size, extent's type and their lock holder. New VDIs can be created from snapshots. These 

VDIs will also share duplicated blocks with the snapshots used to create them. However, data from different 

VDIs without a common ancestral is not shared.  

Satori [12] and VMware ESX Server present two approaches that and eliminate duplicates in memory 

instead of disk. Both approaches are intended for the scenario where there are several virtual machines running 

on the same physical host, and the objective is to share VMs' memory pages. In VMware ESX, memory is 

shared by doing a scan to all the VMs' memory pages and by calculating their hashes and storing them in a Hash 
Table. This scan is done periodically and all the pages that are shared are marked as copy-on-write. VMware 

ESX also introduces the Ballooning mechanism that is used when the server needs to reclaim free pages from 

their VMs. One of the advantages presented in Satori approach is the possibility of detecting short-lived sharing 

opportunities. In other approaches, like VMware ESX Server, that use the scan method, some of these 

opportunities are not processed. 
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IV. REDUNDANCY STUDY 
This chapter presents a study about the redundancy found in a personal data set. The viability of two different 

methods, which find redundant data, is discussed in terms of space saved and in terms of space used by 

metadata. This metadata is necessary to share identical data in a scenario resembling the one we address. 
 

4.1  Redundancy Detection  

This section presents our study about duplicated data found in GSD's data set. This data set contains 

1,676,046 personal files associated with research projects from GSD and has a size of 108.11 GB. We choose it 

because its content is expected to resemble the one found in services like Dropbox, where personal data from 

several users is stored. On the one hand, we know that this data is slightly more related because personal files 

belong to researchers that have projects in common. On the other hand, the files that everyone possesses have 

few copies when compared to Dropbox's data set. Fixed size block - This approach is similar to the whole file 

method, but finds redundancy at the block level. This way blocks digests are used instead of files digests. In this 

method the block's size is fixed.  

GSD's data set was used to test the applicability of these two methods in our work. Freed up was used 

to detect duplicated files. Freed up is an application that detects files with the same content inside a directory 
and its subdirectories. Files only need to have the same content to match and file names do not need to be 

identical.  

An application was written, in C [8], to detect duplicated blocks. This application receives as 

arguments the path for the directory where duplicated data will be searched and the value to be used for the 

block's size. The application reads regular files' contents located inside the directory and its subdirectories, and 

computes a SHA-1 digest for each file's block. These hashes are stored in a hash table to detect collisions. This 

algorithm uses the fixed size block method but, when it reaches the end of the file and the last block's size is 

inferior to the default size, the hash for that block is calculated anyway. 

 

Table 4.1: GSD's data set redundancy results: comparison between the whole file and the fixed size block 

approaches. 

 File Block 4KB Block 8KB Block 12KB 

Files/blocks Scanned 1,676,047 29,530,586 15,464,284 10,794,932 

Files/Blocks Without Duplicates 536,417 22,610,369 1,158,715 7912074 

Unique Files/Blocks 765,594 24,449,140 12,584,338 8,632,784 

Files/Blocks to Eliminate 910,452 5,081,876 2,87,949 2,164,844 

Space Saved 13.37GB 16.75GB 16.35GB 16.01GB 

Duplicates per Regular File/Block .68 .23 .25 .27 

Duplicates per Duplicated File/Block 0.39 2.76 2.87 3.00 

 
Space saved improves by using the fixed size block method instead of the whole le. We ran the fixed 

size block algorithm for three different sizes, 4 KB, 8 KB and 12 KB, and the space saved is identical within 

these three options. The best approach, in terms of space saved, is the 4KB fixed size block method. 15.5% of 

the total space is saved by using this approach. The whole le approach saves 12.4%. This represents the worst 

method. We can also witness that, in average, each file has less than one duplicate, but if the le is replicated, it 

possesses, in average, 4 identical copies. For blocks, the average results are inferior, but the relation is similar. 

 

 
Figure  4.1 shows the number of les we can find in the GSD's data set with a certain number of duplicates. 

 

This figure shows values up to twenty five duplicates of the same file. 
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Figure  4.2 shows the same information for files with more than twenty five duplicates. 

 

These figures are interesting to understand that the number of les with few duplicates is substantially 

higher and that this number drastically decreases when the number of duplicates per le grows. We also think that 

is interesting to notice that there are les with more than two thousand duplicates. We only present here charts for 

the le results because the blocks charts are very similar and the conclusions we can extract from them are the 

same. The results described above only show the efficiency of the methods in terms of space saved. However, in 

our work, we also need to have in account the space that will be occupied by metadata that will be used to hold 

information needed for sharing identical data. 
 

4.2  Metadata  

As said before, our main goal is to find duplicated data and share it in an interactive system where 

several VMs' virtual disks are mapped into a shared storage. Besides having an efficient method to find identical 

data, metadata holding information that will be used to share blocks with the same content and to keep VMs' 

disks I/O operations consistent is needed. In this section, we use our study's results to estimate metadata's size. 

As a consequence of presenting virtual disks to VMs, a table (Translation table) that translates virtual addresses 

to physical addresses is needed. Virtual addresses are the addresses that VMs request to read and write to their 

virtual disk. Physical addresses are the addresses that point to the location of the file/block in the physical 

storage. This table is needed because VMs will see virtual disks that will make the sharing process transparent to 

them. However, these disks will have shared content that will be mapped into the same physical address at the 

physical storage. 
 

Translation table's size can be calculated using the following formula: 

 
Nfb is the maximum number of items that VMs' virtual disks can store and Phyadd is the size of the 

physical address. We are talking about virtual disks where redundancy elimination must be trans-parent. This 

way the number of items found at this level will be higher than the one found at the physical storage, where the 

virtual disks are mapped and where duplicated data is eliminated. In this formula, we do not contemplate virtual 

address's size. We assume that implicit values for virtual addresses can be used to reduce this overhead. As an 
example, an array where the index represents the virtual address and the value pointed by the index represents 

the physical address can be used. Other data structures like trees can also be used to reduce the overhead. GSD's 

data set was used to estimate the size for this table. The size of physical address used was 64 bits and for the Nfb 

parameter we used the values described in the first row of Table  4.1, which represents the total items found at 

the data set before eliminating duplicated data. 

 

 Translation Table’s Size 

4 

KB 

225.3 MB 

8 

KB 

117.9 MB 

1

2 KB 

82.3 MB 

F

ile 

12.79 MB 

 

Table  4.2 shows the values obtained. 
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This table shows the expected size of the Translation table for a mapping between virtual and physical 

addresses of files, 4 KB blocks, 8 KB blocks and 12 KB blocks. As expected, the size of the Translation table 

for the file scenario is drastically lower when compared to the blocks' results. 8 KB and 12 KB blocks have 

identical values and the 4 KB block is the worst solution in terms of space consumed. For this table, that we call 

Hash-to-Address, we used the following formula to calculate the worst scenario possible in terms of space 

occupied. This is the scenario where the size of the table is proportional to the number of unique items at the 

global storage: 

 
Nu  is the number of different items at the physical storage, Hash’s is the hash's size, Phyadd is the physical 
address's size and Refcount is the size occupied by the field representing the number of virtual addresses sharing 

a specific physical address. 

Table 4.3: Worst scenario for Hash-to-Address table's size. 

 Hash-to-address Translation table Total Space Saved 

4 KB 746.14 MB 225.3 MB 971.44 MB 15.8 GB 

8 KB 384.04 MB 117.96 MB 502 MB 15.83 GB 

12 KB 263.45 MB 82.36 MB 345.81 MB 15.67 GB 

File 23.36 MB 12.79 MB 36.15 MB 13.33 GB 

 

Table 3.3 shows the result of this formula applied on the same data set described above. We have used 

160 bits for hash's size, 64 bits for physical address's size and 32 bits for representing the number of virtual 

addresses sharing the same physical address. We have used the values described in the third row of Table  3.1 

for the Nu parameter. We choose 32 bits because we think that this value is sufficient to represent an upper 

bound for the number of addresses sharing the same block in a large dataset. By analyzing study's results for the 

4KB blocks, there is one block with 225,165 duplicates that represents the higher value for this approach and for 

all the others. If we assume a scenario where addresses point to 4KB blocks and Refcount has 32 bits, we can 

have 16 TB 4 of virtual content pointing to the same physical address. This value is more than enough for the 
case we described above and for larger data sets.  

A worst scenario can occur if all the free blocks at the storage are being shared between the virtual 

machines and pointing to the same physical address. In such case, we think that the 16 TB value described 

above is an acceptable value. Other aspects, like keeping some redundancy in the storage, which we do not take 

into account, also reduce the number of virtual addresses pointing to the same physical address. 

This table also shows values for the space occupied by the Translation table and the Hash-to-Address 

table and what impact these values have on the space saved that is described in Table  3.1. We see that the 

whole file approach continues to be the worst solution despite the small size occupied by its metadata. Among 

all block based approaches the results are very similar. However, if we try to reduce Hash-to-Address table's 

size, there is always a trade of. For instance, we can think in the opposite scenario where the Hash-to-Address 

table is not used. In this new scenario, a digest must be calculated for each block at the storage, to find a match 
for the block that is being shared. As a matter of fact, this solution presents serious drawbacks because it 

generates a huge amount of CPU and I/O overhead. Therefore, there is always a trade of between metadata's size 

and computational overhead generated. 

 As stated before, some redundancy is necessary at the storage. In this survey, we do not contemplate 

this issue. However, the decision to maintain some redundancy can be easily achieved in two ways: 

 One solution is to update an entry in the VM's Translation table to point to a shared physical address in some 

occasions only. This way redundancy is achieved automatically. This approach allows maintaining some 

redundancy without having to keep additional metadata information. 

 Two extra columns can be added to the Hash-to-Address table for each duplicated block that is desirable to 

have in the system. One of the columns has the physical address at the global storage and the other has 

information regarding virtual ad-dresses that are sharing that physical address. This approach consumes 

space but, with it, we can control the number of duplicated data, the number of virtual addresses that are 
sharing each of the physical blocks and handle read requests that fail because the block they are pointing to is 

corrupted. With this last method, we have more control but we lose in terms of space occupied by metadata. 
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V. ARCHITECTURE OF DEDUPLICATION 
This chapter introduces architecture to detect and share duplicated data from VMs running in the same physical 

host and sharing the same storage.  

 

 
Figure  5.1 describes this scenario. 

5.1   Overview  

The architecture is composed by three modules. The I/O Interception module is used to intercept I/O 

requests from VMs and register the blocks that were written. For each VM there is an independent I/O 

Interception module. The Share module is responsible for processing the modified blocks and sharing them with 
other blocks with identical content. The Garbage Collector module is necessary to provide free blocks to the I/O 

interception module for copy-on-write (COW) operations and to collect free blocks that were freed by the Share 

module or by the COW requests. COW is necessary to keep I/O requests coherent. 

 

 
Figure  5.2 shows a description of the architecture 

 

5.2 Intercepting 

I/O Requests the I/O Interception module is responsible for intercepting I/O re-quests, from VMs to 

their virtual disks, at the block level. A Translation table is necessary for each VM. This table maps virtual 

addresses into physical addresses and is crucial to share physical blocks between several virtual addresses, being 

these virtual addresses from the same VM or from several VMs. Read and write I/O requests from the VMs 

require checking the Translation table, which is needed to find the location of the physical block necessary for 

processing the I/O operation. For each VM there is an independent module intercepting I/O re-quests. Data 

structures described above are not shared between VMs. This means that each VM has its own Translation 

Table and Dirty Addresses Table. 
 

5.3   Share Module  

Data that has been written can potentially be shared and must be examined. Virtual addresses that have 

content susceptible to be shared are kept in the Dirty Addresses table and processed later. In this section, it is 

described our module that processes this table and shares identical data.  

 The Share module is the same for all VMs, but processes concurrently the algorithm described above 

for each VM. This way, a con-currency control mechanism is necessary for the Hash-to-Address table that will 
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be accessed concurrently to eliminate redundancy between all the VMs' virtual disks. A similar mechanism is 

also necessary for the VM's Translation table and Dirty Addresses table because they are accessed concurrently 

by the Share module and by the module that intercepts I/O requests. 

 

5.4 Garbage Collector Module  

The Garbage Collector module has a queue of free blocks (Free Blocks queue) and is responsible for 

distributing unused blocks across the I/O Interception modules when a copy-on-write occurs and is necessary a 
new block to write data modification. GC module also is responsible for collecting unused blocks that are 

produced by sharing and copy-on-write operations. Another important policy decision is to choose when the 

Garbage Collector must process the Free COW queue's elements. These requests are not processed immediately 

when they are introduced at the queue because it would generate more overhead in the I/O write operation. 

Garbage Collector runs when the queue reaches a determined size that can be modified accordingly to the space 

we are willing to spare for the queue. This method alone is not satisfactory because a scenario where the queue 

takes too long or never reaches that size threshold is possible to happen. This way, a second mechanism was 

introduced to activate the Garbage Collector if a determined time has passed since the last run.  

The Garbage Collector's Free Blocks queue must be loaded with some free blocks in it. This is 

important because the blocks freed by the sharing process may not be sufficient for attending the unused block 

requests to perform COW operations. Such scenario is only expected in early stages of the sharing algorithm or 
for very specific cases, where shared blocks are constantly modified and sharing opportunities are not being 

properly addressed. For this last case, one solution is to increase the timing between Share module's scans, 

which will allow the Hot and Cold set approach, described in the prior section, to perform better. 

 

VI. CONCLUSION 
This review introduces a solution to find and eliminate duplicated data in a virtualized system. First, 

the effectiveness of two techniques to find duplicated data was evaluated with the GSD's data set, which 

contains personal les from several researchers. One of the techniques detects duplicated les and the other detects 

duplicated blocks with a fixed size. For our specific scenario, we concluded that the block approach is better. 
This observation is still true when the space overhead introduced by the metadata necessary to eliminate 

duplicated data is taken in account. Three different block's sizes were used and the results, in terms of space 

saved, were similar.  

A solution to detect and eliminate redundancy between virtual disks of VMs, which are running in the 

same physical machine and sharing a common storage, was presented. Our solution does not use a typical scan 

approach to detect duplicated data at the storage. Instead it uses a dynamic approach that intercepts I/O write 

requests from the VMs to their virtual disks and uses this information to share identical data. With this 

approach, we reduce the computational power that would be necessary by using a scan method. We also 

minimize the overhead introduced into the I/O write requests, by delaying the process of calculating the blocks 

signatures and sharing them. Our architecture is composed by three modules and each has a different purpose. 

The I/O interception module intercepts VMs' I/O requests and redirects them to the correct physical address. 

This module keeps a list of all the blocks that were written, which will be consumed by our Share module. The 
Share module is responsible for processing each element of that list and sharing it. At this module, an additional 

mechanism was introduced to prevent the sharing of blocks that are modified frequently. Besides these modules, 

there is a Garbage Collector module responsible for distributing free blocks to the I/O Interception module and 

collecting unused blocks that result from the sharing process and from the copy-on-write operations. The copy-

on-write operations are fundamental to prevent VMs from modifying blocks that are being shared.  

To conclude, this review presents a solution to find and eliminate duplicated data in a virtualized 

scenario, which is not addressed, as far as we know, by any commercial or open-source product. 
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